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ON THE THEORY OF A THREE-DMNSIONAL, VISCOUS HYPERSONiC SHOCK LAYER IN THE 
NEIGHBOURHOOD OF THE PLANE OF SYMMETRY* 

E.A. GERSBBEIN and S.A. YUNITSKII 

A three-dimensional flow in a hypersonic viscous shock layer is studied 
near the plane Of symmetry at Reynolds numbers ranging from the moderately 
small, to large. The solution of the system of equations of a shock 
layer /l/ is sought in the form of series in circular coordinates. The 
system of equations for the principal terms of the expansions appears 
not to be closed, since they contain terms with a longitudinal component 
of the peripheral pressure gradient which must be taken into account in 
order to obtain a correct description of the flow at large Reynolds 
numbers. 

A procedure for truncating the series is proposed, enabling the system of equations to 
be closed for the principal terms of the expansion , as well as for the subsequent terms. The 
system of equations and boundary conditions obtained accurately describe the flow in the shock 
layer over the whole range of variation of the Reynolds numbers for which the equations of 
hypersonic viscous layer hold. A numerical solution of the problem is obtained over a wide 
range of variation of the Reynolds number, as well as the injection (suction) parameters. 
Characteristic profiles of the velocity and temperature components across the shock layer are 
given in various cross-sections of the plane of symmetry and also of the distributions of the 
pressure and heat transfer coefficient along the body surface. 

The same difference mesh is used to obtain a solution for the equations of the three- 
dimensional boundary layer near the plane of symmetry on a permeable surface, and it is com- 
pared with the results of the theory of the viscous boundary layer. It is shown that the 
difference in the value of the coefficient of friction in the direction containing the 
cross-section of the body surface with the largest radius of curvature /l/ occurs not only 
in the neighbourhood of the stagnation point, but is retained along the whole of the plane 
of symmetry. The qualitative behaviour of the relation expressing the dependence of the 
ratio of the coefficients of friction obtained by solving the equations of the shock and 
boundary layers on the injection parameter at any point of the plane of symmetry, remains the 
same as at the stagnation point. The ratio increases with increasing suction and decreases 
with increasing injection, and at sufficiently large injection the values of the coefficient 
of friction agree at every pointofthe plane of symmetry. 

A three-dimensional viscous shock layer near the plane of symmetry of bodies of revolution 
streamlined at the angle of attack, was studied in /2-6/and various approaches were used to 
achieve the closure of the system of equations. In particular, in /2, 3/ the pressuregradient 
was approximated with help of the tables of inviscid supersonic flow, and in /4-6/ the pres- 
sure gradient in the peripheral direction was found by expanding the pressure in a trigonomet- 
ric Fourier series in terms of the peripheral coordinate and retaining the first two terms 
of the expansion. A solution of the equations in the leeward part of the plane of symmetry 
of the blunt body was obtained in a form "tied" to the solution in the windward part. A 
numerical solution was obtained using the method of establishment for small angles of attack. 
Flow in 'a three-dimensional viscous shock layer, with a plane of symmetry, was also studied 

in /7, 8/. 
At low Reynolds numbers, as the asymptotic analysis of the equations of the three-dimen- 

sional viscous shock layer implies /9/, terms containing an arbitrary component of thepressure 
gradient can be omitted, and the problem becomes closed for the principal terms near the 

plane of symmetry. Such an approach was developed in /lo/, where a numerical solution was 
obtained for the equation of a hypersonic viscous shock layer near the plane of SyPnnetrY, and 
an analytic solution of the same problem was also obtained in the first-order approximation 
using the integral method of successive approximations /ll/ for blunted bodies at varying 
angles of attack. 

1. Three-dimensional hypersonic viscous shock layer near the plane of 
symmetry. We shall consider three-dimensional flow past a blunt body in the coordinate 
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system normally attached to the streamlined body: xr, ti are chosen on the body surface, and 

9 is orthogonal to the surface. The equations of a three-dimensional hypersonic viscous 

shock layer in a homogeneous gas, with the modified Rankine-Hugoniot relations at the shock 

wave when Z = xaS and with boundary conditions on the body surface for xs = 0, are given 

in /I/. Let us change in Rqs.(l.lf-Cl.31 of /l/ to the Dorodnitsyn variables 

&sf’--_x’, qsp=a+, I=&fai. 

I 

Lj pT/liaz’ 
1) 0 

(a = adha - a12, fkfi are the components of the first quadratic form of the body surface) and 
introduce two stream functions mI and (pt, so that the equation of continuity is satisfied 
identically 

a @I 
89% 

=&myjg- =a * = ‘pa* V’G) 

Rere and henceforth a prime denotes a derivative with respect to 6, the Greek indices 
take the values 1, 2, repeated indices denote summation, and no summation is carried out over 
indices in the parenthesis, P,p,T,p are the dimensionless pxessure, density, temperature 
and viscosity of the gas respectively, ait) are the physical components of the velocity 
vector, u, Re are the Prandtl and Reynolds numbers, y is the ratio of the specific heats, 
and G is the specific, dimensionless gas flux through the body surface. The remaining symbols 
are defined in /I/. The function z&*(%, v)), T*(%, n) will be defined below. 

The equations of the three-dimensional hypersonic viscous shock layer can be written in 
the new variables in the form 

where 
I” = P&&Q, P = pT*@, p = {T*8)e 

The coefficients of the equations are 

The boundary conditions take the following form in the Dorodnitsyn variables: 

0.3) 
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on theshockwave when f= 1 @If), are the physical velocity components in the incoming flow 
written on the body surface), and 

‘cv =o, y = 1, 2; 0 = e, (E, q) 
at the body surface when 6 = 0. 

In the first three equations of (1.1) terms proportional to aPta& are omitted, since 
they are small in the part of the shock layer near the wall, compared with the remaining terms 
azJ/ap [9--131. 

An asymptotic analysis of the problem /9/ shows that the system (l.l)-(1.4) can be used 
with uniform success to describe flow in a hypersonic shock layer over a wide range of values 
of the Reynolds number and injection parameter. 

Let us consider flow in a three-dimensional viscous shock layer on a smooth blunted body 
with a plane of symmetry. Let the surface of the body be described in a Cartesian system of 
coordinatBysIb_y~h; equation ti -f(p, ~9. W e choose the following parametrization of the 
surface: = q,fl =-f&q). Let E= 0 be the plane of symmetry of the flow, and let 
us write urz+ (E, a) - z8 I&, T* (8, q) = (u 131,)*. Assuming that the radius of transverse curv- 
ature of the body is finite , we obtain the following relations in the neighbourhood of the 
plane of symmetry: 

ml*-& u,*-1+0(p), T*-l+O(E*) 

We shall seek the solution of system (l.l)-(1.4) near the plane of symmetry in the form 

F (5, rlr 6) = Pa (11, 6) f F, (SO&* + F4 h 6E4 -t-e . . (1.5) 
P (6, % a = Pe h 6) f P, h, w + P4 (11, UY + - * - 

where p denotes anly of the functions +,8,&p; P is the pressure. Let us expand the coeffi- 
cients of (1.2) in series in E, taking into account the parametrization and the choice of 

uo*, T', and let us introduce the notation 

c,f ill (&&, 1 = k +3, k = 1, 2,3 i(M) 

P,ze4 = (Pab),r Fa = F~or 'PS* = VP,* 

tp4* = (%*h/(cpP)o, B==Bar(~o -t- &g.zs 

Then s&&ci.tuting the expansions (1.5) into (l.l)-(1.4) we obtain, taking into account 

the notation (1.6) (with the zero index omitted), the equations for the principal term 

(l~l')' + (Becp~r)ui -%(2E1'P1 + E"$$) + 0.7) 

c~~s=s0~~~(~,~1) 

+e',OM +&(*. a) 

and second term 

0.8) 
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of the expansion. 
Function R'has the form 

and the functions R2 and Ra can be written in the same form. They do not contain terms 

proportional to Pa. 
The differential operators 

The boundary conditions for 

DC, DT act thus: 

9 (a, b) = [PS* (+- + - w +) 

Draq*(+&.o) 

the system of equations (1.71, (1.8) are 

(1.10) 

-vs8 + u, + @h + &w4 - lcI¶ (VI = 0 
taw~,’ + 0, + (Zar, + ZrCD)(u-LB’ - c&P;) - 

zcpca, (u& -I_ u,*si) - ct,&u, (mu; i ‘hat@) - 
c&4* i;= - !ra*$?*)e; &-2v,V*~ 

(conditions (1.9) refer to the principal, and (1.10) to the second terms of the expansion). 
We stress the fact that in the notation used the velocity component Pa is directed along 

the plane of symmetry, and ul is! in fact, the velocity gradient in the peripheral 5 direc- 
tion (the physical velocity component in this direction is identically equal to zero in the 
plane of symmetry). 

The form of (1.71, (1.8) leads to the conclusion that the system of equations of the 
three-dimensional hypersonic viscous shock layer is not closed near the plane of symmetry for 
the principal, as well as for the subsequent terms of expansion (1.5). Indeed, system (1.7) 
contains the quantity PI, which is the component of the pressure gradient in the peripheral 
direction and is found from the solution of system (1.8) which includes P,, etc. Thus the 
system of equations (1.71 turns out to be connected with (1.8) through PI, and the latter in 
turn is connected with the systems of equations for all subsequent terms of the expansion in 
terms of P,. 

It can be shown that neax the stagnation point the problem is closed for the principal 
and subsequent terms of the expansion /l/, since the dependence of PI on the coefficients of 
the expansion of FI van.ishes. 

At low Reynolds numbers, when the terms with the longitudinal component of the pressure 
gradient can be neglected, the problem is closed near the plane of symmetry for the principal, 
as well as the remaining terms of expansion (1.5). The equations corresponding to this case 
are obtained by formally+putting esa 0 in the right-hand sides of (1.7) and (1.8). 

We propose the following procedure for truncating the series. A system of equations with 
boundary conditions (1.7)-(1.10) becomes closed when the term containing PI is omitted. In 
such an approach the terms of the expansion (1.5)F,,P c and PI are determined near the plane 
of symmetry asymptotically correctly, by virtue of the hypersonic character of the flow a-+0, 
over the whole range of variation of the Reynolds number, from moderately small, to large. 
Indeed, when e-+0 and at low Reynolds numbers, the longitudinal components of the pressure 
gradient disappear from equations (1.7), (1.8). At large Reynolds numbers the effects of 
molecular transport appear in the boundary layer across which the pressure is constant. The 
pressure in the shock layer and at the body surface is found from Euler's equations containing 
no terms with the longitudinal components of the pressure gradient, and the transverse compo- 
nents of the pressure gradient, and the transverse component balanced by the centrifugal 
forces, 

Note that the solution for the second terms of the expansion of F, obtained in this 
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manner holds everywhere within the shock layer , except at the region adjacent to the wall, 
since the inclusion of Pa becomes essential in this region for its determj.nation. 

Further truncations are performed in the same manner. 
F,, F,, P, we omit the term Ps, and 

In the system of equations for all 
F,, PO are obtained asymptotically correctly. 

We also note that the pressure is assumed to be known in problems of boundary layer 
theory.. In this case PI is found from the solution of the outer inviscid problem, and the 
problem of boundary layer flow near the plane of symmetry is closed for the principa3. terms 
of expansion (l.Sf. For tNs reason, the problem of the closure of the system of equations 
for the three-dimensional boundary layer near the plane of symmetry /14/ does not arise. 

2. Numerical solution of the equations of a three-dimensional viscous 
shock layer near the plane of symmetry on a pexzneable surface. When problem 
(1.7)-(1.10) was solved numerically, the terms Rj were neglected as non-ordinal. An explicit 
difference scheme /15/ with approximation accuracy of 0(Ac4, A$) was used. The equations 
were solved one after another as theywerewritten; forP1 and q-16+pldr) 
were integrated from the surface of the shock wave to the body using Simpson's rule. Iterations 
over the functions A(q), A%(q) were carried out together with iterations of the system of 
finite difference equations necessary by virtue of its non-linearity. Every new value of the 
quantities A, A, was determined using a damping factor, usually equal to 4. There was no 
damping over the profiLes. 

AXI an example, we give the results of a calculation of the flow at zero angle of attack 
past an elliptic paraboloid the equation of whose surface in Cartesian coordinates has the 
form ZyJ= (#)t + k (pJ* where k = RJR,; R,, Ra are the principal radii of curvature of the 
surface at the tip of the paraboloid. The defining parameters of the problem were varied 
within the limits 0.1 <k < i, i < Re f IO*, 0.5 <O < 1, -0.i25~G~';I~0.125,~=0.1,c,=0.71,8,(~)=0.1, 
G yh'= ccnst. 

Figs-l--4show some of the results of the computations. The solid linees in Fig.l. depict 
the characteristic profiles of the tangential velocity components U~U,,UJ~U~ and the temp- 
erature 13 across the shock layer when q = 0 (lines 1, 3,) and n=3 (lines 2.4) for two 
values of the Reynolds number, Re==5 (lines 1, 2) and Re= 4@Q(lines 3, 4) and for G=O,k= 
0.4, or 0.5. The distributions along the body surface of the pressure Pw, pressure gradient 

PlW and the heat transfer coefficient xeferred to its values at the stagnation point q,, are 
shown in Fig.2 by the solid lines for the same values of the parameters (lines 1 for Re= 5, 
lines 2 for Re== 100, the dot-dash lines depicting the pressure distribution over the body as 
given by Newton's formula). Here 

We note that when the Reynolds numbers exceed 100, the distributions of P, and Ptut becomes 
practically independent of the further rise in the Reynolds number, and coincide with the 
lines 2. When Re1:1-5, the distributions approach those given by Newton's formuLa. The 
influence of the Longitudinal components of the pressure gradient on the flow parameters was 
determined by solving the system (1.7), (1.9) for the principal terms of the expansion from 
which the longitudinal pressure gradients were omitted /IO/ (the dashed lines in Figs.1, 2). 
Computations show that when S&ReQlOO, the influence of the omitted terms containing the 
pressure gradients on the distribution of the pressure and relative heat fluxes 2, alang the 
body, is small. Thust in the case of the conditions shown in Fig.;?, the maximum deviation in 

the value of qiobtained for various formulationsofthe problem does not exceed 5% at the point 
?=3,Re= 100. The difference in the absolute values of the coefficient g is in this case 
is -30%. The distributions in the values of the coefficient of fxiction behave in the same 
manner. 

Fig.3 shows the profiles of ti,uv and 8 in two cross-sections, q=O (lines 1, 3) and 

n== 3 (lines 2, 4) calculated for Re= $.lP, k =O,&at==O.S and for two values of the specific 
gas flux 'acxoss the surface 6~0 (Lines 1, 2) and GfimO.125 (lines3, 4 1. The graphs 
show that fox an injection Gfo'= 0.125 the viscous boundary layer separates completely from 
the body along the whole plane of symmetry and becomes a displacement layer, andan invfscid 
layer of injected gas forms near the body. The maximum in the profiles of B at s-3 is 
explained by the fact that the stream lines situated near the body surface have passed through 
a strongly heated part of the shock layer near the stagnation point. 

To compare the results obtained within the framework of the theory of the viscous shock 
layer and boundary Layer, we solved numerically the system of equations of three-dimensional 
boundary Layer near the plane of symmetry with injection or suction, using the same finite 
difference method /15/ and on the same difference meshes as system (1.7)-(1.10). The equa- 

tions of the three-dimensional boundary layer near the plane of symmetry /14/, written in 
terms oftheDorodnitsyn variables, have the form (1.7), provided that the fourth equation is 

written in the form P-0. The boundary conditions on the outer boundary of the boundary 
layer are specified intheusual manner , and the numerical solution used the values of the 
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Fig.3 

Fig.2 Fig.4 

pressure and longitudinal components of the pressure gradient taken from the solution of the 
equations of the viscous shock layer at high Reynolds numbers (Re= 10) for the impermeable 
body surface (G= 0). 

Fig.4 shows the relation between the coefficients of friction in the $ direction at 
the surface z, of the body, obtained by solving the equations of the shock and boundary 
layers (k = 0.4,Re= 5-W, 0=0.5 (line 1 for q ==O andline2for fl=3)forvariousvaluesofthe 
injection (suction) parameter cl/;;. Itwas shown in/l/ for theneighbourhoodof the stagnation point 
thatthedifferenceinthecoefficient of friction s, inadirection coincidingwiththeplane 
containing the cross-section of the body surface with the greatest radius of curvatuxe, can 
be considerable even at high Reynolds numbers. An analogous result is obtained here also for 
the whole plane of symmetry. The qualitative behaviour of the dependence of 7W on the injec- 
tion parameter remains the same as at the stagnation point, at every point of the plane of 
symmetry; + increases with increasing suction and decreases with increasing injection, so 
that at sufficiently large values of the injection parameter the quantity r,, differs little 
from unity (i.e. the coefficient of friction obtained from the numerical solution of the 
boundary layer equation becomes equal to that obtained from the numerical solution of the 
shock layer equations at high Reynolds numbers). Comparing the coefficients of friction in 
the F# direction we see, that the deviation of the ratio T,, from unity increases as n in- 
creases and for (I= 3 (k= O.&Re= 5.1W,G= 0) reaches -7% compared with 2% fox 11'0. This 
implies that the effect of vortieal interaction increases as n increases. 

1. 

2. 

3. 

4. 
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ON FREE PERTURBATIONS IN HYPERSONIC LAMMAR FtOW BEHIND A PROFILE* 

S.V. MANUILOVICH 

Plane-parallel laminar hypersonic flow at large distances behind a wing 
of infinite span is considered. Non-symmetric free perturbations in the 
basic flow, described in terms of a blast analogy, are studied. The motion 
of the gas obeys the Navier-Stokes equations and is specified using two- 
term asymptotic representations. The symmetric and antisymmetric perturba- 
tions of the blast solution have an oscillatory form, with amplitude and 
frequency decaying in the downstream direction. 

1. Formulation of the problem. We shall study a plane parallel flow of a hypersonic 
pm = 0 real gas past a profile. The viscosity h and thermal conductivity k are assumed to 
be proportional to the specific enthalpy , and we denote the corresponding proportionality 
coefficients by lie, ko. The ratio x of the specific heats C, and cvwi.11 be assumed to be 
constant and to satisfy the inequality i <x< 2. We shall use the density p_ oftheincoming 

flow, its velocity u, and the coefficient k.D as the basic unit measures. The Prandtl 
number Pr == C&elk,. 

We introduce the notation 1 fur, up for the components of the velocity vector along the 
z, y axes of a Cartesian system of coordinates whose origin coincides with the streamlined 
profile whose abscissa axis coincides with the direction of the incoming flow. We denote the 

pressure, density and specific enthalpy by p, p, w respectively. In describing the motion 

of gas we shall use the system of Navier-Stokes equations and the Mises 2, Y variables. 

The principal terms of the asymptotic expansions 2+00 describing the laminar hyper- 

sonic flow of a viscous, heat conducting gas behind a body of finite dimensions, were obtained 
in /l/. The solution constructed there is symmetrical about the streamline %' = 0 andincludes 
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